2-BENZYLIDENE-1-THIOTETRALONE S-OXIDE : A NOVEL METHOD OF GENERATING TRANSIENT 0.8-UNSATURATED SULFINE

Takayuki Karakasa and Shinichi Motoki*

Department of Chemistry, Faculty of Science, Science University of Tokyo,

Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Abstract : 2-Benzylidene-1-thiotetralone dimer S-oxide and S,S'-dioxide have been prepared by the oxidation of the dimer with m-chloroperbenzoic acid. The α , β -unsaturated sulfine generated by the thermolysis of these oxides was trapped by norbornene.

Although a wide variety of aryl sulfines are known as stable substances, $^{1)}$ no convenient method for the generation of α , β -unsaturated sulfines has been reported.

In view of the generation of the α , β -unsaturated thiones by the thermolysis of the corresponding dimers, 2) 3,4-dihydro-2H-thiapyrans, their S-oxide $\underline{2}$ and S,S'-dioxide $\underline{7}$ have been considered to be likely α , β -unsaturated sulfine precursors. Therefore, we attempted the oxidation of 2-benzylidene-1-thiotetralone dimer $\underline{1}^2$) by m-chloroperbenzoic acid (mCPBA). To $\underline{1}$ (2 mmol) dissolved in 30 ml of dichloromethane a solution of mCPBA (2 mmol in 20 ml dichloromethane) was added at room temperature under nitrogen atmosphere in 30 minutes. The color of solution turned from deep-blue to sky-blue. After stirring for 45 minutes the solution was washed with aqueous sodium bicarbonate and dried over anhydrous sodium sulfates. The solvent was evaporated and the residue was recrystallized from benzene-ligroin to give sulfine $\underline{2}^{**}$: yield 63%; mp 166-169 °C; IR (KBr) 10.5 (C=S=0) $\frac{3}{1}$ cm⁻¹; NMR (CDCl $\frac{1}{3}$) $\frac{3}{1}$ 2.00-3.00 (m, 8H), 3.50 (s, 1H), 5.07 (s, 1H), 7.00-7.53 (m, 17H), and 9.07 (m, 1H) $\frac{4}{1}$; MS (15 eV) m/e 516 (M⁺), 468 (1), 435 (5), 266 (21), 250 (80), 249 (100), 218 (81).

The α , β -unsaturated sulfine $\underline{4}$ generated by the thermolysis of $\underline{2}$ was trapped by norbornene. A suspension of $\underline{2}$ (0.82g) and norbornene (0.3g) in dry xylene 5 ml was refluxed for 3 hr under nitrogen atmosphere. The solvent was evaporated and the residue was chromatographed on Wakogel C-200 to give $\underline{5}$ (yield 46%, mp 96.5-98.5 °C (98.5-99.5 °C)) and $\underline{6}^{**}$: colorless needles; yield 75%; mp 201-203 °C; IR (KBr) 1040-1060 (S=0) cm⁻¹; NMR (CDCl₃) δ 1.20-2.00 (m, 8H), 2.08-2.68 (m, 4H), 3.02-3.36 (m, 3H), 7.04-7.48 (m, 8H), and 8.28 (m, 1H); MS (70 eV) m/e 360 (M⁺, 5), 344 (38), 343 (100), 250 (12), 249 (23).

Similarly, we have also prepared the α , β -unsaturated sulfine dimer 7** by the reaction of $\underline{1}$ (4 mmol) [dissolved in 100 ml of dichloromethane] with 8 mmol of

mCPBA [30 ml of dichloromethane] : greenish yellow needles ; yield 82% ; mp 121-123 °C ; IR (KBr) 1100 (C=S=O) and 1040-1050 (S=O) cm⁻¹ ; NMR (CDCl₃) δ 1.93-3.10 (m, 8H), 3.77 (s, 1H), 4.70 (s, 1H), 7.00-7.53 (m, 16H), 7.77 (m, 1H), $\frac{4}{}$ and 9.10 (m, 1H) $\frac{4}{}$; MS (15 eV) m/e 531 (M⁺-1), 530, 436 (40), 266 (100), 250 (44), 249 (38), 234 (38), 233 (34), 218 (92).

The thermolysis of 7 with norbornene gave 6 in 78% yield.

At present we are investigating the oxidation of other α,β -unsaturated thione dimers to explore the scope of the preparation of α,β -unsaturated sulfine dimers.

Ph
$$\frac{1}{2}$$
 mcpba $\frac{1}{2}$ morbornene $\frac{\Delta}{2}$ $\frac{\Delta}{2}$ $\frac{\Delta}{4}$ $\frac{\Delta}$

References and Notes

- ** These new compounds (2, 6, and 7) gave satisfactory values in elementary analyses.
- 1) D. H. Reid, "Organic Compounds of Sulphur, Selenium, and Tellurium", The Pitman Press, Vol. I, p 197, 290 (1970); ibid, Vol. II, p 223, 320 (1973) ibid, Vol. III, p 248, 359 (1975); ibid, Vol. IV, p 136 (1977).
- 2) 7. Karakasa and S. Motoki, J. Org. Chem., 43, 4147 (1978).
- 3) B. Zwanenburg, L. Thijs, and J. Strating, Rec. Trav. Chim., 86, 577 (1968).
- 4) The stereochemistry of the C=S=O system of these sulfines was determined by the NMR spectra: B. Zwanenburg, L. Thijs, and A. Tangerman, Tetrahedron Letters, 1731 (1971).
- 5) T. Karakasa and S. Motoki, submitted for publication in J. Org. Chem..

(Received in Japan 21 June 1979)